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Abstract

The number of neurons and synapses that exist in a small patch of cortex is immense. The Neural
Field Equations (NFE) constitute an essential tool in the analysis of the behavioral dynamics of these
neuron populations. The neuronal field models represent, on a large scale, the spatial dynamics of
networks of neurons in terms of nonlinear integro-differential equations. These equations describe the
space-time evolution of variables such as membrane potentials or activity at synapses. They play an
important role in various fields such as Robotics, mainly in the creation of autonomous robots that
interact with other agents to jointly solve a task. Therefore, simulations play an important role in the
study of brain dynamics. This work analyzes one-dimensional deterministic NFEs, taking into account
the delays caused by finite transmission speed and external stimulus, and presents several numerical
methods to solve them, which are studied for their convergence and complexity. In a second phase,
these methods are used to study working memory and the conditions under which this phenomenon
occurs. To conclude, we present some simulations that illustrate the various steps of how the working
memory effect in the brain is processed. MatLab is used as the programming language that implements
the algorithm, in order to simulate the neural fields studied in this paper.
Keywords:Deterministic neural field equations, finite transmission speed, external stimulus, working
memory, MatLab

1. Introduction
1.1. Motivation

One of the main challenges in neuroscience is to un-
derstand how neuronal mechanisms such as learn-
ing, attention, cognition, long term memories, are
formed in the brain. All of these mechanisms listed
above share one thing - memory or working mem-
ory. For example, learning is a process by which
we integrate new knowledge generated as a result
of experiences. The product of such experiences is
converted into memories stored in our brain. To un-
derstand this phenomenon on we have to give first
the beginnings of mathematical models for neuro-
science. In 1952, A.H. Hodgkin and A.F. Huxley,
see [2], wrote a paper describing how action poten-
tials in neurons are initiated and propagated, us-
ing the language of electrical circuits and translat-
ing them into a system of four ordinary differential
equations. Further investigation of nerve stimulus
propagation led in 1962 to the FitzHugh-Nagumo
equations, [3], [4], [5], where the Hodgkin-Huxley
system is reduced to two equations that describe
the propagation of impulses in the nervous system.
However, these classical neuroscience models were
not applicable to a large population of nerve cells.

The real human brain contains about 100 billion
neurons with roughly 1014 synapses between them.
A human’s cerebral cortex is about 2-4 millime-
ters thick and contains about a fifth of all neu-
rons. According to recent estimates, the cortex
can store up to 100 Tb (1014 bytes) of data. This
large number of neurons and synapses distributed
along such limited region, lead us to treat the cor-
tex as a virtually continuum space. Due to its small
thickness, the cortex (or its parts) are often consid-
ered as one- or two-dimensional domains. To sur-
pass the dificulties of dealing with such amount of
nerve cells Wilson and Cowan [9] and Amari [10],
in the 1970’s, developed a continuous neural field
approach to model the brain areas with high neu-
ronal density. Originally, the Neural Field Equa-
tion (NFE) derived by Amari describes the average
membrane potential of the neurons located at x at
instant t, V (x, t). Here, we analyse the equation in
the one-dimensional case:
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∂

∂t
V (x, t) = S(x, t)− αV (x, t)+∫

Ω

K(|x− y|)f(V (y, t))dy (1)

where V (x, t) is a continuous unknown function
V : Ω × [0, T ] → R and represents the neuronal
membrane potential at point x and instant t.
S(x, t) represents an external excitation source

(stimulus) and f the firing rate of neurons, that
is, the ability of the neuron to emit a signal as a
function of the membrane potential.
K(|x − y|) is a connectivity function and repre-

sents the strength of the interaction between neu-
rons at positions x and y. It is assumed that K
depends only on the distance between x and y.

α is a constant that represents the rate of de-
crease of potential, resulting from dissipation.
Ω represents the considered domain.

2. Numerical methods
2.1. Discretization
To numerically treat the equation (1), within the
time interval [0, T ], we define a step τ and a net-
work of points tj = jτ , j = 0, 1, ..., nt.
In the range Ω = [−L,L] in space, we define a step
h and a point lattice xi =−L+ ih, i = 0, 1, ..., N .
We will use three methods, one explicit, one semi-
implicit and finally, one fully implicit. The par-
tial derivative with respect to time of the potential
V (x, t) is treated using a forward difference, in the
case of the explicit Euler method, and backward, in
the case of the semi-implicit and implicit ones. We
rewrite (1) equation as follows:

∂

∂t
V (x, t) = S(x, t)− αV (x, t) + κ(V (x, t))

t ∈ [0, T ], x ∈ Ω ⊂ R

V (x, 0) = V0(x),

(2)

where κ denotes the non linear integral operator
defined by

κ(V (x, t)) =

∫
Ω

K|x− y|f(V (y, t− r(x, y)))dy (3)

2.2. Explicit method
The forward Euler method for (2) appears in the
following way:

Vi,j+1 − Vi,j

τ
= Si,j − αVi,j + κi,j ,

i = 0, ..., N, j = 0, ..., nt − 1
(4)

where

• Vi,j represents the aproximation of V (xi, tj)

• Si,j represents S(xi, tj)

• κi,j represents the aproximation of the integral
in the right hand side of (1)

2.3. Semi-Implicit method
We present here a semi-implicit method in time that
calculates the external stimulus S(x, t) and the so-
lution V (x, t) at point (i, j + 1) in the network.

The semi-implicit Euler method is presented as
follows:

Vi,j+1 − Vi,j

τ
= Si,j − αVi,j+1 + κi,j ,

i = 0, ..., N, j = 0, ..., nt − 1
(5)

becoming

Vi,j+1 =
τ(Si,j + κi,j) + Vi,j

1 + ατ
(6)

2.4. Implicit method
The method consists of the following

Vi,j+1 − Vi,j

τ
= Si,j+1 − αVi,j+1 + κi,j+1 (7)

where the difference from the previous method is
the calculation of the integral in time step j +1, as
in the case of the other parameters.

Differently from the explicit and semi-implicit
methods, with this algorithm at each time step we
have to solve a system of nonlinear equations.

To solve this system, we use the fixed point
method. We will show that, under certain condi-
tions, at each time step, the system of equations
(7) has a solution and that this solution can be ap-
proximated by the fixed point method. We will use
reasoning similar to what was used in [13].

2.5. Convergence of the Implicit Method
We use, in the following, this definition

Vj(x) = V (x, tj) ∀x ∈ Ω, i = 0, ..., n.

We represent by Uj(x) the aproximated solution
of equation (2) in time step tj . To approximate the
derivative of V with respect to time, we use the
difference:

∂

∂t
U(x, tj) ≈

Uj+1(x)− Uj(x)

τ
(8)
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Substituting the equation (8) into equation (2)
we get

Uj+1(x)− Uj(x)

τ
= Sj+1 − αUj+1(x)+

κj+1(Uj+1(x)) j = 0, ..., n− 1
(9)

The equation (9) can be rewritten in the following
way

Uj+1(x)−
1

α+
1

τ

κ(Uj+1(x)) = fj+1(x), x ∈ Ω

(10)
where

fj+1(x) =
(
α+

1

τ

)−1(
Sj+1 +

Uj(x)

τ

)
, x ∈ Ω

(11)
Equations (10)-(11) define a nonlinear Fredholm

integral equation of the second kind and we will
analyse its solvability using standard results of func-
tional analysis. In order to apply the Banach fixed
point theorem, we define the iterative process:

U
(γ)
j+1 = λκ(U

(γ−1)
j+1 ) + fj+1(x) = G(Uγ−1

j+1 ),

x ∈ Ω, γ = 1, 2, ...
(12)

where

λ =
1

α+
1

τ

=
τ

1 + ατ
(13)

If the function G is contractive in a certain closed
set X ⊂ C([−L,L]), such that G(X) ⊂ X, then
by the Banach fixed point theorem, equation (10)

has a unique solution in X and the sequence U
(γ)
j+1

defined by (12), converges to this solution in the
maximum norm. The sequence converges for any

initial guess U
(0)
j+1 ∈ X. In our case, the solution is

by construction the iterate Uj+1, that is close to Uj .
Therefore it makes sense to assume X is a certain
closed set which contains Uj and choose U

(0)
j+1 = Uj .

To prove that G is contractive in X we need to show
that for a certain constant L, L < 1, we have

||G(V )−G(U)||∞ ≤ L||V − U ||∞, ∀U, V ∈ X
(14)

where the norm is the maximum norm in
C([−L,L]).
From formula (12)

||G(V )−G(U)||∞ ≤ λ

∫
Ω

|K(x−y)||f(V )−f(U)|dy

(15)

Using the mean value theorem for integrals, we
get

||G(V )−G(U)||∞ ≤ λ|Ω|.||K||∞ max
U,V ∈X

|f(V )−f(U)|

(16)
where |Ω| denotes the length of Ω. Assuminng

that the firing rare f has a bounded continuous
derivative in R, we can write:

||G(V )−G(U)||∞ ≤ λ|Ω|.||K||∞fmax||V − U ||∞
(17)

where

fmax = max
x∈R

|f ′(x)|. (18)

Hence, (14) is satisfied with

L = λ|Ω|.||K||∞fmax (19)

Recall that

λ =
τ

1 + ατ
< τ. (20)

Therefore, in order to satisfy L < 1 it is sufficient
to require that

τ |Ω|.||K||∞fmax < 1 (21)

or equivalently

τ <
1

|Ω|.||K||∞fmax
(22)

From (22) we conclude that G will be contractive
in a certain set X ⊂ [−L,L] if we take τ sufficiently
small and then we show that the fixed point method
converges. Then the iterative process in (12) with

U
(0)
j+1 = Uj converges to the solution of (10).
The system (7) results from discretizing (10) in

space, using the trapezium rule. Therefore, it is
necessary to show that, using the discretization, the
fixed point theorem is reapplicable. We use an ar-
gument similar to the one used in section 2.1.2. of
[13].
When we introduce the trapezzium rule for the cal-
culation of the integral κ(U), we introduce a finite
aproximation for the integral operator κ. Consider
Uh the vector with N + 1 entries such that:

(Uh)i = U(xi), i = 0, 1, N

Then, the finite aproximation of κ can be given
by:

(κh(Uh))m = h
(g1(x0) + g1(xN )

2
+

N−1∑
k=1

g1(xk)
)

(23)
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with

g1(xk) = K(|xm − xk|)f((Uh)k) m = 0, 1, ..., N
(24)

Substituting κ by κh in equation (10), it turns:

(Uh)i −
1

α+
1

τ

(κh(Uh))i = (fh)i, i = 0, 1, ..., N

(25)
where κh(Uh) is defined by (23) and

(fh)i = f(xi), i = 0, 1, ..., N (26)

with f defined by (11).
Note that system (25) is equivalent to system (7),

which defines the implicit Euler method for the con-
sidered equation.
To calculate (fh)i in instant j+1 we have to cal-

culate Uj in that specific point of Ωh. Therefore, in
each time step of our method, we have to solve (25),
which is a system with N + 1 non linear equations.

Consider the iterative process

Uh,(γ) = λκ(Uh,(γ−1)) + fh(x) = Gh(Uh,(γ−1)),

γ = 1, 2, ...

(27)

As in case of Fredholm integral equation, the con-
vergence of the iterative process (27) depends on the
contractivity of Gh.
Using the same arguments as before, by analogy

with (17), we obtain

||Gh(V )−Gh(U)||∞ ≤ λKmaxfmax||V − U ||∞Nh

≤ λKmaxfmax||V − U ||∞|Ω|
(28)

for U, V ∈ Xh ⊂ RN+1 where:

Kmax = max
xm,yi∈Ωh

|K(|xm − yi|)| (29)

It follows that that the function Gh is Lips-
chitzian in Xh with constant L1

L1 = λKmaxfmax|Ω| (30)

where λ is defined by (13).
The equality (30) is identical to (19), with the dif-

ference that the norm ||K|| is substituted by Kmax.
Therefore, repeating the argument expressed by the
formulas (20) and (21), we get the formula, similar
to (22):

τ <
1

Kmaxfmax|Ω|
(31)

We conclude that, if τ satisfies inequation (31)
above, then the non linear equation (25) has a
unique solution Uh ∈ Xh, where Xh ⊂ RN+1

is a certain closed set which contains Uh
j . More-

over, the iterative process defined by (27) with
Uh,(0) = Uh

j converges to this solution. The prob-

lem that emerges is the one of the convergence Uh

to Uj when h → 0. To analyze this question, we
solve equation (10) in each point of the network
Ωh.

Uj+1(xi)−
1

α+
1

τ

κ(Uj+1(xi)) = fj+1(xi), x ∈ Ωh

(32)
Subtracting equation (25) to (32):

Uj+1(xi)− Uh
i = λ(κ(Uj+1(xi))− κh(Uh

i )),

i = 0, 1, ..., N
(33)

Note that

κ(Uj+1(xi))− κh(Uh
i ) =

(
κ(Uj+1(xi))−

κh(Uj+1(xi))
)
+
(
κh(Uj+1(xi))− κh(Uh

i )
) (34)

Substituting (34) in (33) results

Uj+1(xi)− Uh
i = λ

(
κ(Uj+1(xi))− κh(Uj+1(xi))+

κh(Uj+1(xi))− κh(Uh
i )

)
, i = 0, 1, ..., N

(35)

From (35) we obtain

||Uj+1 − Uh||∞ ≤ λ
(
||κ(Uj+1)− κh(Uj+1)||∞+

||κh(Uj+1)− κh(Uh)||∞
)
(36)

The second term in the last sum can be writen
in terms of ||Uj+1 − Uh|| if we know that κh is a
Lipschitz function, exists a constante L1 such that

||κh(Uj+1)− κh(Uh)||∞ ≤ L1||Uj+1 − Uh||∞,

∀Uj+1, U
h ∈ Xh

(37)

where L1 is given by (30).
This way, we can rewrite (36) in the form:
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||Uj+1 − Uh||∞(1− λL1) ≤ λ(||κ(Uj+1)−
κh(Uj+1)||∞)

(38)

From (20), we have λ < τ and we obtain λL1 < 1
if τ satisfies condition (31).

Finally, to calculate ||κ(Uj+1)− κh(Uj+1)||∞, we
should recall that κh is obtained by applying the
trapezium rule with step h. Then, if Uj+1,K and S
are sufficiently smooth, there exists a certain M >
0, which does not depend on h such that:

||κ(Uj+1)− κh(Uj+1)||∞ ≤ Mh2 (39)

From (38) and (39) we conclude that there exists
a constant M1 such that

||Uj+1 − Uh||∞ ≤ M1h
2 (40)

Finally, the following bound for the error verifies

||Uj+1 − Uh||∞ = O(h2), h → 0. (41)

and we get second order convergence in order to
space step h in the implicit method.
The convergence of the semi-implicit method can

be proved using arguments similar to those used in
[12]. In the case of the explicit method, it can be
proved that it is convergent if ζ < α and τ verifies

τ <
2

α− ζ
(42)

where ζ = ∥f∥∞∥K∥∞.

3. Numerical Examples
We introduce here four examples to illustrate the
performance of the methods described above. The
solutions of the first two examples are only time
dependent. The solutions of the other two are de-
pendent in time and space.

3.1. Example 1
We introduce here a first example already used in
[13] in which the exact solution is only time depen-
dent,

K(|x− y|) = e−(x−y)2

S(x, t) = − tanh(σ exp(
−t

c
))b(x, y)

f(x) = tanh(x)

(43)

where b(x) =

∫ 1

−1

K(x, y)dy =

√
π

2
(Erf(1+ x)+

Erf(1− x)).

The initial condition is given by V0(x) = 1
The exact solution of this example is:

V (x, t) = exp(−t)

We present below the tables with the errors and
orders of convergence with respect to τ for the three
methods, explicit, semi-implicit and implicit in the
time interval t ∈ [0, 1] and space interval x ∈ [−1, 1]
with a step size h = 0.1.

To test the order of convergence z with respect to
time step τ , or h we use the following formula which
calculates the error eτ with the maximum norm:

eh,τ = max
i=0,1,...,N

|V (xi, tn)− Vi,n|

zτ =

log
eh,τ/2

eh,τ

log
1

2

, zh =

log
eh/2,τ

eh,τ

log
1

2

(44)

τ eh,τ zτ
0.001 0.00033844 0.9868
0.002 0.00067071 0.99362
0.004 0.0013355 0.99733

Table 1: Error and order of Convergence for the
explicit method

τ eh,τ zτ
0.001 0.00062232 0.9999
0.002 0.0012446 0.99743
0.004 0.0024847 0.99371

Table 2: Error and order of Convergence for the
semi-implicit method

τ eh,τ zτ
0.001 0.00026862 1.0034
0.002 0.0005385 1.0012
0.004 0.0010779 0.99969

Table 3: Error and order of Convergence for the
implicit method

Analyzing the values in the tables, we conclude
that the implicit method provides the best results,
with the smallest error value. In the compari-
son between explicit and semi-implicit, the explicit
presents a smaller error. In any of the three meth-
ods, the estimate of the order of convergence is close
to 1, which is in agreement with the well-known
properties of the Euler method.
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3.2. Example 2
We now consider an example where the solution is
increasing with time.

K(|x− y|) = exp(−(x− y)2)

f(x) = tanh(x)

S(x, t) = 1 + t− tanh(t)b(x, y)

where b(x) =

∫ 1

−1

K(x, y)dy =

√
π

2
(Erf(1+ x)+

Erf(1− x))
The initial condition is given by V0(x) = 0
The exact solution of this example is:

V (x, t) = t

We now present the errors and orders of conver-
gence with respect to the step in space, h, for the
three methods, explicit, semi-implicit and implicit
for the interval t = [0, 0.1] and an interval in space
[−1.1] with a step τ = 0.001.

h eh,τ zh
0.05 3.6013e-05 2.0002
0.1 0.00014407 2.0008
0.2 0.00057663 1.9474

Table 4: Error and order of Convergence for the
explicit method

h eh,τ zh
0.05 0.00015259 0.042411
0.1 0.00015715 0.15835
0.2 0.00017538 0.46333

Table 5: Error and order of Convergence for the
semi-implicit method

h eh,τ zh
0.05 1.5515e-06 2.0003
0.1 6.2075e-06 2.0013
0.2 2.4853e-05 1.9472

Table 6: Error and order of Convergence for the
implicit method

The values in the tables indicate a smaller error
in the implicit method, followed by the explicit and
finally the semi-implicit method. In this example,
the error norm for the semi-implicit method is much
higher than for any of the other methods. In this

method, the error decreases very slowly when de-
creasing h. This results from the fact that in this
method (contrary to what happens in the others),
the error resulting from discretization in time has a
greater weight than that resulting from discretiza-
tion in space. Thus, when h is decreased, the error
decreases, but this is not reflected in the estimate
of the order of convergence, which does not reflect
the actual order of convergence of the method.

3.3. Example 3

Here we present an example where the solution de-
pends on a certain parameter α. For certain values
of α, the solution never reaches the critical value of
the firing rate. In this case, the solution does not
depend on x (it only depends on t). For other val-
ues of α, the solution reaches the critical value. In
this case, the second-hand integral is no longer null
and the solution also depends on x.

The integro-differential equation is presented as
follows

∂

∂t
V (x, t) = −αV (x, t) + exp (−αt)+∫

Ω

K(|x− y|)f(V (y, t))dy
(45)

with α ∈ IR+,

K(x) = exp(−x2) (46)

f(v) =


0, if v < θ

1, if v ≥ θ

(47)

where θ = 0.5.

Supposing an initial condition V (x, 0) = V0 < θ,
the solution of (45) is

V (x, t) = c exp(−αt) + t exp(−αt) (48)

where c is a constant which verifies c = V0.

We present two figures of the different solutions
we obtain depending on the value of α, the first for
α = 1 and the second for α = 0.5.
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Figure 1: Exact and numeric solution for α = 1,
with τ = 0.01, h = 0.05 and V (x, 0) = 0.2

Figure 2: Exact solution (48) and numerical solu-
tion for α = 0.5, with τ = 0.01, h = 0.05 and
V (x, 0) = 0.2

In Figure 1 is represented the exact and approxi-
mated solution, in the case of α = 1. As can be seen
by the graphic, in this case we have V (x, t) < 0.5,
for t ∈ [0, 1] and the solution is given by (48).

In Figure 2 when t = 0.415, the solution V (x, t)
hits the value 0.5 and the integral in equation (45)
is no longer null, therefore the solution is not given
by (48) as in the case of α = 1.

3.4. Example 4
Finally, we introduce a new example where
S(x, t)=0, in which a closed form is known for the
stationary solution of the problem.
The integro-differential equation is presented as fol-
lows:

∂

∂t
V (x, t) = −αV (x, t) +

∫
Ω

K(x− y)f(V (y, t))dy

(49)
with α ∈ IR+,
where f is defined by (47), with θ = 0.
Suppose that

K(x) = 3.5e−1.8|x| − 3e−1.52|x| (50)

Define

W (x) =



x

|x|
[1.94(1− e−1.8|x|)

+1.97(e−1.52|x| − 1)], if x ∈ IR \ {0}

0, if x = 0

(51)
The function W is an odd function and as it can

be shown in this case equation (49) has a stationary
solution of the form:

So,

V (x) = W (x)−W (x− 2.287978) (52)

Then, V (x) > 0 if and only if x ∈ [0, a].
Regardless of the initial approximation, the solu-

tion of the equation (49) tends towards the station-
ary solution (52) as t approaches infinity.

Here we consider V0(x) = V (x) as the initial con-
dition, we obtain the following table which illus-
trates the error and order of convergence in space
step h for the stationary solution using the implicit
Euler method with τ = 0.001 and a space interval
[−3, 3] with time interval t = [0, 10].

h eh,τ zh
0.025 0.0053414 1.0255
0.05 0.010873 0.97564
0.1 0.021382 1.0381

Table 7: Error and order of Convergence for the
implicit method

Analyzing table 7, we see that the error of the
method decreases linearly with decreasing the step
in space h, contrary to the order 2 that would be
expected using the trapezium method for solving
the integral. This happens because the integrand
function is not differentiable, which is due to the
fact that we are using the Heaviside function as the
firing rate f , which is not continuous at x = 0.

To solve this and obtain a differentiable integrand
function, we use a known continuous approximation
of the Heaviside function:

f1(x) =
1

1 + e−kx
(53)

for some large k.
After this change in the firing rate function, we

obtained the following orders of convergence illus-
trated by the table 8

h zh
0.025 2.4048
0.05 2.0707
0.1 2.4902

Table 8: Error and Order of Convergence using
function f1 as firing rate with k = 180
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Comparing with table 7, replacement of the
Heaviside function by a continuous function caused
an increase in the order of convergence to values
close to 2, as would be expected. This change can-
celed the deceleration that was being caused to the
method by the discontinuity of the Heaviside func-
tion at the point x = 0.

4. Simulation of Working Memory
In this chapter we will apply the numerical meth-
ods studied in chapter 2 to some NFE cases that
were studied in [14] and which are related to work-
ing memory modeling. Given a transient external
excitation S(x, t), we compare its effect on neuronal
potential, during and after the period in which it is
active.
To study this case, we have the general NFE

equation (1) with a parameter θ > 0 where it is the
value to which the neuronal field activity converges
in the absence of external stimulation.

∂

∂t
V (x, t) = S(x, t)− αV (x, t)

+

∫
R
K(|x− y|)f(V (y, t))dy − θ

V (x, 0) = V0(x)

(54)

The connectivity function K has the form,

K(x, y) = Ae−k|x−y|(k sin(|bx|) + cos(bx)) (55)

where A > 0 and 0 < b ≤ 1 control the amplitude
and the zero crossings, respectively.
k controls the rate at which the oscillations of the

K function decay with distance.
The function S(x, t) that represents the stimula-

tion is of the Gaussian type and is defined in such a
way that, from a certain instant ti, S(x, t) becomes
constant.

S(x) = (Ss e
−x2/(2σ2) − Si) (56)

S(x, t) =

S(x) t < ti

0 t ≥ ti

(57)

After this moment t = ti, starts the important
part of the process, from the point of view of the
applications. In the absence of external stimulus,
we will see if the solution is altered or if it remains
as if no signal had occurred. In order to simulate
neuronal activity, we performed several tests illus-
trated in the following figures. The external signal
variables have the values Ss = 8 and Si = 0.5.
The values of σ considered were 0.4; 3; 13.

4.1. Solution with σ = 0.4
In the case of σ = 0.4 the solution over time for
x = 0 is represented in Fig.3. From the shape of
the graph it is clear that at the instant t = 10,
there is no longer external stimulus. Therefore, the
solution increases until t = 10 and then decreases.
From t = 15, the graph of the solution practically
coincides with that of the stationary solution, to
which it converges when t → ∞.

Figure 3: Solution in x = 0 as a function of time in
case of σ = 0.4

In Fig.4, the external stimulus and the solution,
at t = 10, are represented in red and blue, respec-
tively. As we can see the solution behaves similarly
to the external signal. The stimulus shapes the form
of the figure while t ≤ 10.

Figure 4: External stimulus and solution in t = 10
in case of σ = 0.4

When representing the solution in t = 20, we see
that the stimulus was not strong enough to create a
”memory effect” in the neurons. The final solution
is constant equal to the value of θ. This happens
because the external signal S(x) was not ”strong
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enough”. The value of σ was still low, to create a
change in the neuronal field and create the memory
effect.

Figure 5: Shape of the solution in the absence of
external stimulus t = 20

4.2. Solution with σ = 3

In Fig.6 the evolution of the solution in x = 0 is rep-
resented. It is clear that at instant t = 10, there is
no longer any external stimulus. This time, we see
a more significant increase in the solution compared
to the previous result, so after decreasing, it stabi-
lizes at a higher value. From the instant t = 15,
the graph of the solution coincides with the one of
the stationary solution, which in this case satisfies
V (0) = 10 (see fig. 8).

Figure 6: Solution in x = 0 in function of time in
case of σ = 3

In Fig.7, the external signal function is repre-
sented in red and in blue, the solution in space for
the instant t = 10. As we can see, the solution
behaves similarly to the external signal as we saw
earlier.

Figure 7: External stimulus and solution in t = 10
in case of σ = 3

Starting from this point, the behaviour of the so-
lution is very different from what happens in the
case σ = 0.4. In Fig.8 we see that the stimulus was
strong enough to create a ”memory effect” in the
neurons, because in the following figure, the solu-
tion in t = 20 is not constant and resembles the
external stimulus in form. But while the maximum
of the external stimulus, reached at x = 0, is ap-
proximately 20, that of the stationary solution is
approximately 10.

Figure 8: Shape of the solution in the absence of
external stimulus t = 20

The observed results allow us to conclude about
the existence of stationary solutions, whose shape
depends on the shape of the external stimulus.
First, the solution evolves into a new state, trig-
gered by the external stimulation. After this is an-
nulled, the evolution to the steady state is verified,
which represents the memory effect. This only oc-
curs if the stimulus is strong enough.
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5. Conclusions

The study of the convergence of the three methods,
explicit, semi-implicit and implicit, revealed first or-
der of convergence with respect to time step size and
second order, with respect to space step size. The
conditions under which convergence is guaranteed
are derived in Sec. 3. The higher computational
cost of the implicit method, compared with the
explicit one, is compensated by its greater stabil-
ity. The comparative analysis of the three methods
revealed the advantages of the implicit method in
comparison with the explicit one, when the numer-
ical solution of the NFE is considered. Through-
out the examples presented, we observed in the ta-
bles that the implicit method presents the small-
est error. The semi-implicit method did not always
present smaller errors compared to the explicit one.
The use of MatLab rises some limitations in terms
of calculation time when we wanted a refined net-
work. For future work, an approach with a more
developed language, like Julia, for example, could
bring some advantages in comparison with Matlab.
The numerical experiments carried out in Chap. 4,
when the NFE is solved in the case of a transient ex-
ternal signal, confirm that if the signal satisfies cer-
tain conditions, the stationary solution of the NFE
may reflect its properties, namely, the existence of a
bounded domain of neuronal activity (bump). Such
stationary solutions reflect a phenomenon known as
working memory. The numerical methods in the
thesis can be adapted in order to take into account
the delay effect, resulting from the fact that prop-
agation speed is finite. In chapter 3 an example is
described in which this delay is considered. For fu-
ture research, we want to apply the delay equation
to the study of real-life phenomena, such as working
memory.
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